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ABSTRACT 

We show that a broad class of extensions of measure preserving systems in 
the context of ergodic theory can be realized by topological models for which 
the extension is "almost one-one". 

§1. It is well known that in a topological measure space one can have sets 

that are large topologically but small in the sense of the measure. In topological 

dynamics, when (X, z) is a factor of(Y, r) and the projection n : Y ~ X i s  one 

to one on a topologically large set (i.e. the complement of  a set of  first category), 

one calls (Y, z) an almost 1-1 extension of (X, z) and considers the two 

systems to be very closely related. Nonetheless, in view of our opening 

sentence it is possible that the measure theory of (Y, z) will be quite different 

from the measure theory of (X, z). We will prove here that indeed one can 

realize this possibility in an extreme way. Here is our main result: 

THEOREM 1. Let (X, z) be a non-periodic minimal  dynamical system, and 

let n : Y --, X be an extension of (X,  z) with (Y,  r) topologically transitive and Y 

a compact metric space. Then there exists an almost l -  1 minimal  extension o f  

(X, z), (12, ~), with fz : Y-- ,  X and a Borel subset Yo c Y with a Borel measur- 

able map 0 : Yo-" )" satisfying (l) Or --- t0, (2) /r0 = n, (3) 0 is 1-1 on )70, 

(4) #(Yo) = 1 for any r invariant measure# on Y. 

In words, one can find an almost 1-1 minimal extension of X such that the 

measure theoretic structure is as rich as that of  an arbitrary topologically 

transitive extension of X. The next corollary answers a question raised by 

S. Glasner which provided the initial impetus for our work. 
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COROLLARY 2. Let (X, ~ , # ,  T) be an ergodic measure preserving 
transformation with non-trivial point spectrum described by (G, p) where G 
is a compact monothetic group {P"),sz = G. Then there is an almost 1-1 

minimal extension of  (G,p) (i.e. a minimal almost automorphic system), 
(Z, a), and an invariant measure v on Z such that (Z, ~, v) is isomorphic to 

(X, ~ ,  I~, T). 

This corollary shows that the measure theoretic character of  almost auto- 

morphic systems .is completely arbitrary. Another easy corollary of  the main 
theorem is the following: 

COROLLARY 3. 
formations, 

Any homomorphism of  ergodic measure preserving trans- 

: 7"1)--" (X2, & ,  7"2) 

has a minimal model. 

In the proof of  this corollary one uses the Jewett-Krieger theorem to get a 

minimal (in fact strictly ergodic) model for the factor and then Theorem 1 

enables one to lift to a minimal extension that captures (X~, ~1,/tl, T0. 

In [W] one can find a stronger version of  the corollary with minimal re- 

placed by strictly ergodic, but a rather more elaborate machinery is required 
to get it. 

The nature of  our proof of  Theorem 1 is such that one can carry it out with 

minor modifications for any discrete group F instead of  Z. Using this we can 

construct an example of a minimal almost automorphic action of  the free 

group that has no invariant measure. This answers a question raised several 

years ago by W. Veech. 

§2. Proof of main theorem 

Here is the strategy we will use in proving the main theorem. Fix some Y0 ~ Y 

with dense orbit and let nyo = x0. We will construct a function f :  Y ~ Y and 
then using f ,  F :  Y - ~ X  × yz will be defined by 

F(y)  = (zry, { f(z"Y)Jnez). 

On X × yz we will define ¢ b;y 

= ( z x ,  

so that F is equivariant. Finally Y will be the closure of  F(z"yo : n ~ Z )  in 
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X X yz and ~t is the obvious projection onto the first coordinate. Soon Y0 will 
be defined and then 0 will be F [ Yo- 

In constructing f i t  will be convenient to assume that X is totally discon- 
nected. This is not a serious assumption inasmuch as one can always find a 
minimal 1-1 extension of X that is totally disconnected and then work over 

that extension. The main work will consist in finding a subset J c Z and a 

collection { Uj : j  E J} ofclopen sets in X, pairwise disjoint, with ZJXo E Uj, and 

then fwil l  be defined by 

y i f  ny q~ U U i, 

f l y )  = i~J 

rJy0 i f rcy~ ~ .  

Now the desired properties for ~, I? can be formulated in terms of the ~ ' s .  

In particular if U = Ujej  Uj includes the entire r-orbit of  x0, then the ~t we 

defined above will be almost 1-1 since then ¢r-~(xo} will consist of  a single 

point. The minimality of(Y, t )  is an easy formal consequence of the preceding 

property. The crucial property, of  course, is the one that ensures that the orbit 

closure of F(y0) is large enough to accommodate all of  the invariant measures 

that live on Y. This will be done by ensuring that 

Gx = { y E Y: there exists some i ~ Z such that 
d(f(rkr'yo), f(rky)) < 1/K, all I kl =< K} 

has full measure for any invariant measure on Y, and then Yo will be essentially 
O GK. This last point will hopefully become clearer after we begin the 
construction itself. Now for the actual construction: 

Step 1. Cover Y by finitely many open sets Et , 1 < l < L s o t h a t f o r y l ,  Y2 
belonging to the same Et, 

d(rky~, rky2) < 1, all I kl < 1. 

Fix once and for all an ordering of Z, say {0, + 1, - 1, + 2, - 2, . . .}.  By a 
simple inductive procedure define a finite set J~ c Z with the properties: 

(a) 0EJ~, I/ll =L,  
(b) for each 1 < l < L there is a distinctjtEJ~ so that rJ,YoEEl, 
(c) J~ - 1, J~, ,/1 + 1 are pairwise disjoint. 

(Here J~ + a = {j + a : j~J~}.)  We are using, of  course, the fact that Y0 has a 

dense orbit. 

Denote J~ = Ulklz~(J~ + k) and choose integers 0 = no, n~ . . . . .  n 9 so that 
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the sets (Jl  + n,}9=0 are pairwise disjoint. Starting with some element of Jl, 
say 0, let Uo be a clopen neighborhood of x0 so small that 

9 
(zmUo}, m ~ U (J l  -~ ni) 

i=0  

are all pairwise disjoint. For the remaining j E J~ define 

Vj = rJUo, 

so that indeed zJx0 ~ Uj for all j ~J~. Setting 

Ikt --<1 J 1 

the auxiliary nj's guarantee for us that the sets V~, r", V1,. • •, r ", V~ are disjoint 
and thus 

j[~(~-- l ( V l )  ) ~ 1 

for any z-invariant measure b~. Finally put 

f 
y i f n ( y ) ~  U Uj, 

f l (Y)  = i s  J ,  

rJyo if=yeUjforsomejeJ~. 

I f  now y GEt, andj l  ~J~ is such that zJ,YoEEl, then as long as y ~ ~-~(VO 

f~(v~y) = vky, I k l  --< 1 

and so 
w 

d( f ( rky) , f l ( zkz j ' yo) )< 1 Ikl ~ 1. 

The sets Uj, j E Jl will not be changed during the rest of the construction - -  

although f will be modified somewhat. 

Since there is a new feature in the succeeding steps we will first carry out in 
detail step 2 - -  and then formulate the inductive step. 

Step 2. The sets {rc- l (Uj) , j~Jl} ,  Y \  UjEj, n-l(Uj)  form a partition of  Y 
into closed sets. Let ~1 be the minimal distance between these sets and cover Y 
with open sets E 2, 1 <_ ! <= L:. so that for y~, Y2 in the same E? we have 

d(rky,, zky2) < min{½, ~oa,} for all I kl ~ 2. 
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To define J2, first construct a prel iminary set 12 with the properties: 

(a) 12 contains the first element of  Z not in ./1, 1121 = Z2; 
(b) 12 f) J~ = ~ ; 
(c) for each 1 < l ___< L2 there is a distinct iEI2 so that "dyoEE2; 
(d) the sets {12 + k :1 k I < 4} are pairwise disjoint. 

Now -/2 is defined to be all integers of  the form i + k with i E12, I k I < 2 

such that 

 '+kXo  U 
Jff-J 1 

Denoting J2 = UIkl_-<2J2 + k, find ni's so that (J2 + n," 0 =_< i < 100} are 
pairwise disjoint. Starting with any joE J2 take a clopen neighborhood Ujo of  
zJ0x0 so small that the sets 

99 
z"-JoUjo, mE  U ( J2 + ni) 

i=O 

are pairwise disjoint. In addition we need that the sets (27m-j°Eo" m E J2} are 
disjoint f rom the ~ ' s  f o r j  E J,. F o r j  E J2 define 

As before, setting 

Uj = T J-JoUjo.  

we have arranged that 

u(n-'(vg) <= 

y ifrc(y0)~ U Uj, 

f~(y) = J~J,uJ2 

ZJyo i f n y E U j ,  f o r s o m e j E J ~  u J2. 

I f y  ~ n -  ~(V2) then zky cannot  be in n -  1( Uj~j 2 Uj) for I k I < 2. It is possible 

that rky for some I k I < 2 lands in n -  1(Ui ) for some j E J, but in that case, if  

i EI2 was such that ziyo and y are in the same E 2, we would have also zk+'y o in 

the same n -  I(Uj). It follows that we have 

for any z-invariant measure/z on Y. 

Define 
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(,) d(f2(zk+iyo),f2(zky))< ½ for all Ikl ~ 2  

whenever  y $ n - 1 ( V 2 ) .  Furthermore,  we still keep for all y $ n - 1(Vl) U n -  1(V2) 

(**) d(f2(zky), ~(rk+Jyo)) < 1 for I kl =< 1 

and suitably chosen j E Jl. In spite of  the fact that (*) is bet ter  than (**) and 
holds for a larger set we still must  keep track of  relations like (**) since we wish 

to make assertions about  f w h i c h  will be a pointwise limit o f  the f , ' s .  

It 's t ime to formulate the data accumulated up to step M and indicate the 

inductive step. For each m _-< M we have 

(i) sets o f  integers lm,  Jm t111 = J 0 ,  Jm = U l k l < m J m  -}- k ;  

E U l J., and for each such j ,  z Ix 0 ~ Uj; (ii) disjoint clopen sets ([~ }, j 

(iii) Vm = Ulkl<__m Zk( Ujej.. Uj), these zkUj's are also disjoint and there are 
f ~-n ~/~, "~ lOre-- I integers ni, 0 < i < 10 m such that t ~ '  ,nji~0 are pairwise disjoint 

(the dependence of  the n~'s on m has been suppressed); 

(iv) U ~ I~ includes the fir,;t M elements of  Z; 

(v) for each i ~ Ira, I k I < m either z i + kX 0 E Uj for some j E Jl U • • • U Jm - 1 
or i + k EJ ,  n; 

(vi) the functions fm defined by 

f r o ( Y )  = 

y i f l r ( y ) $  U U Uj 
n = 1 J~-Jn 

zJyo i f~z (y )EUj ,  f o r s o m e j E  (~ J. 
r t = l  

have the following property: 
For any K < rn and any y ~ rc - t(VK) U • • • U X- 1(Vm) there is some i ~ IK so 

that for all [k[ < K 

(,) d( fm(zky), fm(zk +iyo) ) < 1/K. 

In fact this last property fbllows from the following more  detailed infor- 

mation: for yq~rt - l (Vr)  U rt-I(VK+1)U . . .  U It-I(Vm) there is some i E I K  
such that either fm(zkz'yo) = zk+iyo and fm(zky) = zky and (*) follows because 

z k + iy o was sufficiently close to zky; or rt (z k + iyo) E Uj for some j ~ U ~-  1 j ,  and 

then also zky ~ Uj and (*) follows because f,, o f  both  points equals Zlyo . 

Step M + 1. (a) Determine a 5M + 1 to be less than 1/(M + 1) and also less 
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than the minimum distance between the Ufs, j ~ [,.Jy Jm and between them 

and the complementary set. Then let {Eft +l }, 1 _-< l =< LM+~, be a finite open 

cover of Y so that for any u, v in the same open set of this cover 

d('rku, zkv) < ~dM+~ all I k I = < M + 1. 

(b) Next define a finite set IM+I C Z with the properties: 

(1) IM+1 contains the first element of Z not in UYJm 

(2) IIM+II = Z ~ + t ,  
(3) I~+1 0 (U~Jm)= ~,  
(4) for each 1 < l < LM+I there is a distinct i ~IM+~ with z i y o E E ~  TM , 
(5) the sets {IM+~ + k:l  k l < 2(M + 1)} are pairwise disjoint. 
This is easily done by an inductive procedure using the fact that the orbit 

{z"y0},ez is dense in Y. 
(c) Define JM+~ as the set of all integers of the form i + k ,  iEIM+1, 

I kl 5 M + I such that 

M 

r~*kxoq~ U U Uj. 
m ~ 1 j E J  m 

In addition set 

JM+~= U (J~+,+k). 
I k l ~ M + l  

Note that the sets JM+I + k, I kl _-< M + 1 are pairwise disjoint. 
.10M+~ (d) Choose integers ni, 0 < i < 10 M+I so that the sets {JM+I + nili=0 are 

pairwise disjoint. Now, starting with any fixedjo EJM+ 1 find a clopen neighbor- 

hood of rJoXo, Uj0, so small that: 
the sets z m -JoUj0 are pairwise disjoint for all 

m E  U (]m+l + ni) 
0<i<10  m + l  

and also disjoint from the previous Uj's. 

(e) Set 

Vm,,= U U 
j E J m +  1 Ikl ~rn + 1 

T k U j .  

By (c), (d) the sets z",Vm + i, 0 < i < 10 m ÷ 1, are pairwise disjoint and thus for 

any z-invariant measure lz 
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, t Z ( V m + l )  ~ lO -{M+ I) 

Finally define 

M + I  

i f n ( y ) ~  U U Uj, 
m = 1 jlEJ m 

M + I  

zJy0 i f n ( y ) E ~ ,  f o r s o m e j E  U arm. 
1 

It is completely straightfoJwcard to check that with these definitions the 
properties (i)-(vi) listed above', continue to hold for M + 1. Doing this for all M 
we finally define 

f = lim f , .  

From the definition of the f , ' s  one sees that this limit is given by the formula 

f(y) = 

i f n ( y ) ~  ~J U E ,  
m = 1 jEJ m 

rJy i f n ( y ) E U j ,  f o r j E  0 j m = j .  
1 

Note that (b)-(1) ensures that Ujes Uj contains the full orbit of x0. Also by 
property (vi) we get for each y not in Urn ~r n-1(V,,) an integer ir such that 

(**) d(f(zky),f(rk+'~yo))< 1/K all [k[ _-<K. 

Furthermore, for any invariant measure/~ 

~ (  m>k(-J n-l(Vm)) <= l/lO k-1. 

Thus for any y not in the #-null set 

there is a sequence of indices ik, k >= k(y) with (**) valid. 
Recall now the definition of  F,  

F(y) = (n(y); (f(z"y)}.~z)EX × yz. 
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The only place where F can fail to be 1-1 is on the fibers n- l ({x)) .  As long 

as for some n, z"(n(y)) avoids U = UjE] Uj, F will be 1-1 on the whole 

fiber to which y belongs. By our construction this set has full measure for any 
invariant measure/~. Together with the property above we get that F maps a set 

of  full/~-measure in Y in a 1-1 fashion into a subset of the closure of F(znyo} 
in X X yz. 

We shall now check in detail the fact that I 7 = F{z"yo n ~ Z }  is a minimal 

almost 1-1 extension of  X. Indeed since U is an open set containing the 

orbit of x0, and for any x ~ U, f i s  constant on n-l({x}),  for any N we can 

find a neighborhood W of x0 such that z" W c U, I n I --< N, and then for 

all y E n - ~ ( W ) ,  f(z"y) depends only on r"n(y) for all tnl _-<N so that 

the diameter of 

V(n-'(W)) = fz-t(w) ~ yz 

will tend to zero as N ~ oo and W (which depends of  course on N) decreases 

to x0. 
To see that (17, ~) is minimal let Z C 17be a non-empty ~-invariant closed 

set. Since X is minimal and ~(Z) in X will be z-invariant we have/ t(Z) - -X.  

Since n is 1-1 over the point x0 it follows that Z includes F(y0) and then Z -- I 7 

by the definition of l 7 as the orbit closure of F(y O. 

REMARK. It is worth mentioning that we did not use the fact that (X, r) 

was minimal in the construction of 17. It played a role only in showing 

that (I 7, t )  was minimal. Thus we could formulate a more general result in 

which (X, z) is taken to be topologically transitive. Since we have no 
immediate application of such a result we refrain from entering into any 

more details. 

{}3. The case of a general discrete group 

In this section F will denote some fixed infinite discrete group. We suppose 

that F acts transitively on Y (say that Fy0 is dense in Y) and n : Y ~ X is an 

equivariant map such that the action of  F on X is minimal and X is totally 

disconnected. In the construction of  f i n  §2, we made no use of  the specific 

structure of Z, and so we could have carried it out for any group F. It will 

suffice to describe the elements of the construction; verifying that it is feasible 

as well as checking that it will give the desired result may be left as an exercise. 

The role of the sets {k:t k l _-< K)  will be taken over by sets B., finite 

symmetric sets containing the identity such that: 
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B~CB.+x a l ln ;  U B . = F .  
1 

Sets I,.,  arm C F will be constructed so that: 

0 I " = F ,  
1 

for each 7 ~ J"', there is a clopen set Uy containing 7x0, such that for fixed m,  

and 71, 72~Jm, 

Uy~ = 727F 1Uy, • 

Also the Uy's, 7 ~ J  = U~ am, are disjoint. 

For any 7 ~ I " ,  o~ E Bm eithe, r a7 E Jm or 

~Tx0E U~, ~' EJ i  for some i < m. 

The sets {aUy:o~B", 7 ~ J " }  are disjoint and furthermore 

V"= U 
aEBm 7~Jm 

have enough disjoint translates so as to force their measure to be less than 

1 0 -  " for any F-invariant measure on X. 

The function f :  Y ~ Y will be defined as before as a limit o f f , . ' s  where 

f 
y i fTr (y)~  U U U~, 

i < m 7EJi 

f r o ( Y )  = 
7Y0 i fTr(y)~U~,  f o r T E  U Ji. 

i > m  

The crucial property is this: i f y  ~ 7r- 1( VE ) U • - - U 7r - 1(V") then there is some 

fl E IE such that flYo is very close to y and for all c~ ~ BE either 

fm(aflyo) = afly o and f"(ay)  = ay 

or aflyo~Tr-l(U~) for some 7 '~-Ji, i < K a n d  then, since y was close enough to 

flYo, also ay  @ 7r- l(Uy) for the same 7. This enables us to prove: 

THEOREM 4. Let F be an infinite group acting minimally on a totally 

disconnected space X,  ~ : Y 4. X an extension o f  X on which F acts topologically 
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transitively. Then there exists an almost 1-1 minimal  extension (l ~, F) of  

X ,  f~ : Y ~ X and a Borel subset Yo c Y with a map 0 : Yo ~ Y satisfying: 

(1) 07 = 70for all ~, ~F;  ~0 = z~, 
(2) 0 is 1-1 on Iio, 

(3) #(Y0) = 1 for any F-invariant measure p on Y. 

In fact the set Yo will be o f  the form zc - ' (Xo)for some set Xo c X and (3) may be 

replaced by p(Xo) = 1 for any F-invariant measure p on X.  

The last remark means that if( I 7, F) has an invariant measure/~ that projects 

onto It on X, then 0- ~ will take/~ onto a F-invariant measure on Y and give in 

fact an isomorphism between ( 17, F,/~) and ( Y, F, 0- ~/~). We apply this remark 

in the next section. 

§4. Almost automorphic actions 

Let F act on a compact metric space X. The action is said to be almost 

automorphic if for some point x o E X ,  (i) the orbit Fx0 is dense and 

(ii) whenever 7 , X o ~ X  for some {7,} c F and x ~X,  we also have 7f~x-*x0. 

Veech has shown [V] that the almost automorphic actions of a group F are 

exactly the almost 1-1 extensions of the minimal equicontinuous actions ofF.  

Now, equicontinuous actions for any group always possess invariant measures. 

Veech has raised the question as to whether there necessarily exist invariant 

measures for almost automorphic actions of arbitrary (non-amenable) discrete 

groups F. We shall show that this is not the case. 

Let F be the free group on r generators, a,, a2, • • •, ar. Let f2 be the set of 

one-sided infinite sequences with entries a i or ai- ~ subject to the condition that 

ai and a~-' never appear consecutively. We can regard F as the set of finite 

words of the same sort, and we can define an action F × f~ -* ~ by letting 7(0)) 

be the infinite sequence obtained by juxtaposing 7 and co and cancelling any 

consecutive occurrence of a generator and its inverse. ~ is a compact metriz- 

able space in a natural way and it is easily checked that ~ is a "boundary" o f F  

in the sense of [F], so that for any probability measure v on ~,  there exists a 

sequence {Tn} in F with 7~v -" a point measure. 

Now let Z be the profinite closure ofF,  so that Z is a compact group with F as 

a dense subgroup. F acts on Z by left multiplication, and clearly Haar measure 

on Z, mz, is invariant for this action. 

LEMMA. The action o f  F on Z × f~ is minimal .  

PROOF. Let A c Z × f2 be a closed F invariant set. Since F is dense in 
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Z,  the projection A ~ Z is onto. Let 2 be a probability measure on A map- 

ping onto mz under this projection, and let 2 be the projection of  2 into ft.  

For some {~,} we have yn2----3~ o for a point o)0Efl. Pass to a sub- 

sequence so that y~ 2 converges, say to v. Then v is a probability measure on A 

mapping onto 6~ under  the projection Z X f~----fL On the other hand ~ 2  

maps to m z  for Z X f~ ~ Z,  and so maps onto m z .  Hence v = m z  X ~,oo. But 

if  this measure sits in A, so does mz × ~o~ for a dense set of  o9. This 

proves A = Z X fL [] 

We now apply Theorem 4 to Y = Z × f~ and X = Z.  F acts minimally on Y 

and so it certainly acts topologically transitively. Let 17 be the almost 1-1 

extension of  Z whose existence is guaranteed by Theorem 4. (17, F) is an 

almost automorphic action. Suppose this action has an invariant  measure 

/~. /2 necessarily projects onto mz, the unique invariant  measure for 

(Z, F). We conclude that F leaves some measure invariant  on Y = Z × f~. 

But this is absurd since F has no invariant  measure on f2. This answers 

Veech's question. 
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